Seasonal variations in the incidence of auroral radio absorption events at very high latitude, and the influence of the magnetotail
نویسنده
چکیده
A statistical analysis has been made of the incidence of auroral radio absorption events at South Pole, and of its dependence on basic geophysical parameters such as season, time of day, and magnetic activity level. It is found that at low and moderate levels of activity the incidence of events in the winter season is at least twice that in the summer. However, at high activity no events at all occurred during the local summer night, which appears to be explicable as the effect of the magnetotail and the consequent distortion of the magnetosphere when the southern polar region is tilted strongly towards the Sun. Previous results from even higher latitudes show the effect in an even more exaggerated form, in that both the day and night periods of absorption activity exhibit strong seasonal variations.
منابع مشابه
Seasonal Study of Dust Deposition and Fine Particles (PM 2.5) in Iran Using MERRA-2 Data
The research results indicated that wet and dry dust deposition is a function of geographical characteristics. The seasonal wet and dry dust deposition and Fine Particles (PM 2.5) correlation in Iran with elevation, latitude and longitude results that the maximum correlation belongs to height, followed by latitude and longitude; meanwhile height and latitude are strongly and reversely correlate...
متن کاملRecurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions
We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close...
متن کاملThe estimation of D-region electron densities from riometer data
At high latitude the hard electron precipitation associated with auroral activity is a major source of ionization for the D-region, one consequence being the absorption of radio waves. Direct measurements of the D-region electron density are not readily available, however. This paper investigates the relationship between the electron density at altitudes between 100 and 70 km and the total radi...
متن کاملRelative timing of substorm onset phenomena
[1] In this paper we examine the temporal ordering of midtail flow bursts, Pi2 pulsations, and auroral arc brightening at substorm onset. We present three substorm events for which the Geotail spacecraft was situated at local midnight, near the inner edge of the plasmasheet. We show that high-speed, convective Earthward directed plasma flows observed by Geotail occurred 1–3 min before auroral o...
متن کاملCombining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کامل